INDIAN SCHOOL MUSCAT
FINAL TERM EXAMINATION
NOVEMBER 2018

CLASS XII

Marking Scheme - PHYSICS [THEORY]

Q.NO.	Answers	Marks (with split up)
1.	$\Phi=\pi / 3$	1
2.	Less wavelength scattered least	1
3.	(i) Spherical (ii) plane OR Width of slit less than or equal to wavelength of light used	1
4.	Neutrinos are charge less and hardly interact with matter	1
5.	$5 \mathrm{~V}$ OR $1.5 \mathrm{eV}$	1
6.	 Any two charactertics of nuclear force OR Definition of Activity SI unit- Becquerel(= 1 disintegration/second)	1 $1 / 2,1 / 2$ $1 / 2$ $1 / 2$

		1
7.	Derivation of $v_{d}=-(e \tau / m) E$ OR Graph resistivity vs temperature semiconductor With the rise of temperature of semiconductor, number density of free electrons increase and hence resistivity decreases	2 1 1
8.	$\begin{aligned} \mathrm{K} & =\left(1 / 4 \pi \varepsilon_{0}\right)(2 \mathrm{e} . \mathrm{Ze} / \mathrm{d}) \\ \mathrm{d} & =2 \mathrm{ze}^{2} / 4 \pi \varepsilon_{0} \mathrm{~K} \\ \mathrm{~d} & =\left(2 \mathrm{ze}^{2} / 4 \pi \varepsilon_{0} \mathrm{~K}\right) \end{aligned}$	1 1
9.	(i) X-rays used as a diagnostic tool in medicine as a treatment for cancer (ii) Microwaves- used in radar systems for aircraft navigation	1 1
10.	$\begin{aligned} & \lambda=\mathrm{q} / l \\ & \mathrm{q}=\lambda l \\ & \Phi=q / \varepsilon_{0} \\ & \Phi=\lambda l / \varepsilon_{0} \end{aligned}$	1 1
11.	$\mathrm{V}_{\mathrm{d}}=\mathrm{V} /(\mathrm{ne} \rho l)$ (i) when V is halved the drift velocity is halved (ii) when l is doubled the drift velocity is halved	1
12.	Electric potential due to electric dipole at axial point:- Diagram Derivation: $\mathrm{V}=\mathrm{kp} / \mathrm{r}^{2}$	$\begin{aligned} & 1 / 2 \\ & 11 / 2 \end{aligned}$

13.	$\begin{aligned} & \mathrm{U}=\mathrm{W}_{1}+\mathrm{W}_{2}+\mathrm{W}_{3} \\ & \mathrm{U}=-0.630 \mathrm{~J} \quad \text { (with expression and calculation) } \end{aligned}$ Work done to dissociate the system of charges $=+0.630 \mathrm{~J}$ $\mathrm{U}_{1}=12 \times 10^{-6} \mathrm{~J}$ Common potential $=100 \mathrm{~V}$ $\mathrm{U}_{2}=6 \times 10^{-6} \mathrm{~J}$ Energy lost $=6 \times 10^{-6} \mathrm{~J}$	$\begin{aligned} & 1 / 2 \\ & 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 \\ & 1 \\ & 1 \\ & 1 / 2 \end{aligned}$
14.) Graphical variation of (BE/A) for nucleons with mass number A. The variation of binding energy per nucleon versus mass number is shown in figur Three main inferences from graph	$11 / 2$ $11 / 2$
15.	$\mathrm{R} / \mathrm{S}=40 / 60$ $\begin{equation*} \mathrm{R} / \mathrm{S}=2 / 3 \tag{i} \end{equation*}$ Equivalent resistance of 12Ω and $\mathrm{S} \Omega$ in parallel is $(12 \mathrm{~S} / 12+\mathrm{S}) \Omega$ $\begin{equation*} \mathrm{R}=12 \mathrm{~S} / 12+\mathrm{S} \tag{ii} \end{equation*}$ From two equations $\begin{gathered} \mathrm{S}=6 \Omega \\ \mathrm{R}=4 \Omega \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 / 2,1 / 2 \end{aligned}$
16.	Verification of laws of refraction by Huygens' principle: Diagram showing incident and refracted wavefront verification	
17.	Derivation of equivalent emf and equivalent internal resistance	

	$\begin{aligned} & E=\left(E_{1} r_{2}+E_{2} r_{1}\right) / r_{1}+r_{2} \\ & R_{e q}=r_{1} r_{2} / r_{1}+r_{2} \end{aligned}$	
18.	AC Generator: Working principle Diagram Derivation for alternating emf Transformer : Diagram Working Derivation of expression	$1 / 2$ 1 $11 / 2$ $1 / 2$ $11 / 2$ 1
19.	Distinguish between diamagnetic and ferromagnetic materials in respect of their (i) intensity of magnetization (ii) behavior in non-uniform magnetic field and (iii) susceptibility.	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
20.	$\text { (i) } \begin{gathered} \mathrm{X}_{\mathrm{L}}=100 \Omega \\ \mathrm{X}_{\mathrm{C}}=500 \Omega \\ \mathrm{Tan} \phi=-1 \\ \Phi=-\pi / 4 \end{gathered}$ Hence current leads voltage (ii) to make power factor unity $\begin{aligned} & \mathrm{X}_{\mathrm{L}}=\mathrm{X}_{\mathrm{C}} \\ & \left(1 / \omega \mathrm{C}^{\prime}\right)=100 \\ & \mathrm{C}^{\prime}=10 \mu \mathrm{~F} \\ & \mathrm{C}^{\prime}=\mathrm{C}+\mathrm{C}_{1} \\ & 10=2+\mathrm{C}_{1} \quad \text { so } \quad \mathrm{C}_{1}=8 \mu \mathrm{~F} \end{aligned}$	$1 / 2$ $1 / 2$ $1 / 2$ 1 $1 / 2$
21.	Definition of threshold frequency and stopping potential	1/2, 1/2

	Explanation why wave theory of light is not able to explain photoelectric effect OR Derivation of $\lambda=(12.27 / \sqrt{ } \mathrm{V}) \mathrm{A}^{0}$ Graph λ vs $\sqrt{ } \mathrm{V}$	
22.	Derivation of Lens maker's formula: Ray diagram Derivation OR Diffraction through single slit: Ray diagram Condition and explanation of secondary minima	1 2 1 2
23.	For L_{1} $\mathrm{V}_{1}=40 \mathrm{~cm}$ For L_{2} Image formed by L_{1} at the focus of L_{2} so after refraction from L_{2} light become parallel Distance between L_{1} and $L_{2}=60 \mathrm{~cm}$ For L_{3} Image formed at focus so incident light on L_{3} should be parallel Distance between L_{2} and L_{3} can have any value	
24.	(i) High permeability, Low coercivity and Low retentivity (any two) (ii) $\mathrm{B}_{\mathrm{H}}=2 \mathrm{~B}$ (with calculation)	
25.	Definition of electric dipole moment S I unit- C-m Derivation: Force acting on it Expression of Torque acting on electric dipole OR Derivation :	$\begin{aligned} & \hline 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 11 / 2 \\ & \\ & \\ & 3 \\ & 2 \\ & \hline \end{aligned}$

	energy stored in parallel plate capacitor energy density	
26.	(i) Derivation: Current lags behind applied voltage (ii) Definition of inductive reactance Graph between X_{L} and f i) Derivation: Current leads the applied voltage (ii) Definition of capacitive reactance Graph between X_{C} and f	$\begin{aligned} & 3 \\ & 1 \\ & 1 \\ & \\ & 3 \\ & 1 \\ & 1 \end{aligned}$
27.	(i) Optical fiber: working with diagram (ii) Derivation of refractive index formula: Ray diagram Derivation (i) Definition of coherent sources Two conditions of sustained interference (ii) Young's double slit experiment; Diagram Derivation of fringe width	$1+1$ 1 2 1 1 1 2

